
Shock waves in quasicrystals

Johannes Roth

Institut für Theoretische und Angewandte Physik, Universität Stuttgart, 70550 Stuttgart, Germany

Received 31 August 1999; received in revised form 29 October 1999

Abstract

Shock waves represent a heavy load on materials. In solids they create a variety of defects like shear bands or
crystal domains. Waves of large amplitude may destroy the structural order completely. We study shock waves in
an Al-Cu-Li-type model quasicrystal, in a closely related crystal structure, the C15 (MgCu2) Laves phase, and in an
amorphous solid. If we take the slightly different composition and binding energy into account we find that the sound
velocity in all the structures is about the same. If the shock waves are weak, only point defects occur. With increasing
intensity we observe broad defect bands in the crystal and the quasicrystals if the cross section of the sample is large
enough. Otherwise the structure looks like an amorphous state. At large shock wave intensities the shock front velocity
approaches the universal material-independent behavior. The structure is destroyed completely in this regime. The
crystal occurs to be slightly more stable than the quasicrystal which means that defects and destruction of the sample
are found at higher shock wave intensities.
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1. Introduction

Quasicrystals differ in many aspects from ordinary
crystals as a result of their aperiodicity. The non-
existence of Brillouin zones for example leads to a
backscattering of plane waves at any wave number
and to the opening of energy gaps. Phonons are
hindered on propagation through a sample and heat
conductivity is reduced. On the other hand the close
packing of atoms leads to an averaging effect like in
amorphous system and to a restoration of the be-
havior predicted by continuum theory for the long-
range limit.

Shock waves are a nice tool to expose a solid to
highly uniaxial stress and to introduce defects wi-
thout explicitly constructing them. In a monato-
mic crystal the shock stress is relaxed to a energe-
tically more favorable hydrodynamically compressed
state by slippage. Often stacking faults are crea-
ted which permit an easy detection of the slippage.
For a crystal it would be rather easy to construct
slip planes and stacking faults and to analyze them.
This is not the case for quasicrystals. If geometric
constructions are used, complicated and rather ar-

bitrary procedures have to be carried out to pro-
duce for example dislocations associated with exten-
ded defects [1]. This can be avoided if we use shock
waves. Here the system itself choses the defect planes
and the Burges vectors.

Our first goal in this study is to find out whether
quasicrystals behave different than other materials
if they are penetrated by shock waves. Metals and
alloys as well as fcc model crystals show a rather uni-
versal behavior with respect to the shock front velo-
city for example. We observe that this behavior is
also valid for quasicrystals binary crystals and binary
amorphous solids in the case of strong shock waves.
For weak shock waves a deviation from the universal
behavior is observed, and a difference between the
crystal and the quasicrystal is showing up.

Our second goal is to find out if new kinds of de-
fects occur in the quasicrystal. By definition, a real
shock wave in a crystal (as opposed to a very strong
elastic wave) causes a permanent plastic deforma-
tion. Usually one finds stacking faults caused by
slipping or twinning and martensitic deformations.
In a quasicrystal these defects can occur also, but
additional types of defects are possible: phason flips,



phason walls, or transformations to crystals and ap-
proximants. It turns out that the types of defects
in the quasicrystal are indeed different from those
of the monatomic crystal, but similar to the binary
crystal.

We will first describe the simulation setup and the
structure model. We will then review shortly the
general behavior of shock waves. The next sections
contain the results and the discussion.

2. Generation of the Shock Waves and Simu-
lation Setup.

Shock waves have been generated in three-
dimensional quasicrystals of the closed-packed
Frank-Kasper-type which is realized in the Al-Cu-Li
icosahedral quasicrystals. The structure can be re-
garded as a quasiperiodic arrangement of oblate and
prolate rhombohedra decorated with small A atoms
at the corners and edge centers [2]. The large B
atoms divide the diagonal of the prolate rhombohe-
dron in the fraction τ :1:τ , with τ the golden mean
(1 +

√
5)/2. For comparison, simulations in a rela-

ted cubic crystalline model, the C15 Laves phase of
MgCu2, have been carried out. The crystal phase
can be regarded as a low-order approximant of the
quasicrystal build of the prolate rhombohedra only.
An amorphous solid was generated from the Laves
crystal by melting, equilibrating and quenching. The
three structures have a rather similar composition:
The crystal and the amorphous solid have the struc-
ture formula A2B, the composition of the quasicrys-
tal is A0.764B0.236. The interactions were modeled
by Lennard-Jones potentials. The radii of the po-
tential minima have been adjusted to the shortest
AA, AB and BB distances. The depth of the po-
tentials between atoms of the same type is −ε and is
−2ε between atoms of different types. The binding
energy is 11.485ε for the quasicrystal, 12.974ε for the
crystal, and 10.564 for the amorphous solid.

There are a number of well established methods to
generate shock waves in computer simulations [3]. In
our case we have cut the sample into two halves and
moved the two parts against each other at constant
velocities±up. Two shock waves are generated at the
center of the sample and move through the sample
at velocities ±(us − up). The setup is equivalent to
a piston compressing a sample at rest at speed up,
thereby creating a shock wave at speed us.

For the simulations we have used the IMD mole-
cular dynamics simulation program developed at our
institute [4]. This program can be run on worksta-
tions as well as on massively parallel computers.

The samples sizes ranged from 20,000 to about
1,000,000 atoms. The geometry was a long rod with
cross-sections 14×14, 23×23, and 61×61 in units of
the minimal atomic distance and lengths 100, 160

and 260. The boundaries were open along the shock
wave propagation direction and periodic along the
two transverse directions. For the amorphous so-
lid we used samples with 80,000 atoms and size
160×14×14.

After the samples have been generated they are
equilibrated for a time interval of t = 10a

√
m/ε

(a is the smallest interatomic distance and m the
mass of the atoms) at kT = 0.001ε and pressure
P = 0.01ε/a3 to prevent a singular behavior of the
shock waves as explained in the next section.

3. General Remarks on Shock Waves

Shock waves have been studied by computer simula-
tion for quite some time [5]. In liquids stable shock
waves with a steady profile exist. This can be deri-
ved from the Navier-Stokes equations and has been
confirmed by computer simulations and experiments.

For solids the results have been rather controver-
sial for a long time, until Holian [6] could finally clear
up the case: there were claims that no steady shock
waves exist [7] even in more-than-one-dimensional
crystals. Today it is known that there are no steady
shock waves in one dimension due to the missing
transverse direction which would permit equilibra-
tion. In two and three dimensions the behavior is
one-dimensional if either the temperature is set to
zero or the shock wave intensity is too low.

A convenient measure for the intensity is obtai-
ned if the piston velocity is given in terms of the
longitudinal sound velocity c0 at zero pressure and
zero temperature. For fcc crystals we find the crosso-
ver from one- to three-dimensional behavior at about
up/c0 = 0.5. At about up/c0 = 1 the shock wave
melts the sample. A diagram of us vs. up is called
a Hugoniot plot. The velocity of the shock front is
us/c0 = 1.86 · up/c0 + 1.01 [3]. It turns out that the
constants of the linear relation between us and up
are rather universal. The slope is between 1.6 and
2.0 for a broad variety of sufficiently anharmonic in-
teractions [8]. It is determined by the repulsive part
of the interaction. The same values of the slope are
obtained for all kinds of metals and alloys in expe-
riment. The theoretical formulation of this relation-
ship requires two ingredients: the Rankine-Hugoniot
relations which can be derived from the conservation
laws of energy and momentum and the continuum
equation, and a simple Grüneisen equation of state
which is valid for all shocked materials [9].

Due to the wide-range validity of the Hugoniot re-
lation we would expect that it is also true for binary
crystals and quasicrystals. A simple demonstration
is possible for a one-dimensional chain of atoms of
equal mass [8]. The shock wave velocity can easily
be derived for atoms of diameter σ and spacing a
with the help of a distance-time diagram. If the per-
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iodic arrangement is replaced by a Fibonacci chain
or even a random arrangement of the atoms of the
same density we find that the shock front velocity has
always the same value us = 2/(1− σ/a) · up where a
is now the average distance between the atoms.

4. Results

Fig. 1 displays the results of the Hugoniot plot for
Laves crystal and quasicrystal. We have not com-
puted the longitudinal sound velocity explicitly but
have assumed that it is the value of us at up → 0 as
in the monatomic crystalline cases mentioned above.
For the quasicrystal we obtain c0 ≈ 12

√
ε/m, for

the crystal c0 ≈ 14.5
√
ε/m and for the amorphous

solid c0 ≈ 10
√
ε/m. Since the relation between the

sound velocities is about the same as the square root
of the relation between the binding energies and the
unit of velocity is

√
ε/m we conclude that the speed

of sound is about the same for all three structures.
A more precise comparison of the sound velocities
would require a direct computation of the speed of
sound.

At low piston velocities we observe unsteady shock
waves, a deviation from the universal behavior, and
different slopes for crystals and quasicrystals. The
slopes are 3.1 for the crystal and 2.6 for the quasi-
crystal. This result is independent of the starting
temperature of the sample. Between 0.3 and 0.6
up/c0 we find the crossover from the one-dimensional
to the three-dimensional case of strong shock waves.
At higher piston velocities we recover the universal
behavior. In the case of the amorphous solid we ob-
serve the universal behavior for all shock front velo-
cities. But in the whole range from up/c0 = 0 up to
up/c0 = 1 we find that the initial shock front velo-
cities lie on the straight line of the one-dimensional
case. After a simulation time of t = 0.05a

√
m/ε

a transition to the three-dimensional case occurs.
Thus it takes only a short time for the sample to
develop a steady shock wave. The us vs. up curve
obtained in our simulations does not depend on the
sample cross-section and on the length of the rod as
long as the shock wave has not penetrated the whole
sample during simulation time.

In the crystal the crossover from the one-
dimensional to three-dimensional behavior occurs at
shock wave intensities higher than in the quasicrys-
tal. The reason is that the local symmetry around
an atom is on average larger in the crystal than in
the quasicrystal, and the transition to the universal
behavior is a symmetry breaking in such a way that
a coupling between the normal and the transverse di-
rections has to be established. This occurs through
the random fluctuations caused by temperature.

The crystal structure remains largely perfect up
to up/c0 ≈ 0.37. Only diffusion is observed. Within
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Fig. 1. Hugoniot plot of the shock velocity versus pis-
ton velocity. At low shock wave intensities and at
the beginning of the simulations we observe the one-
dimensional behavior, indicated by the straight lines.
Between up/c0 = 0.3 to 0.6 we find the crossover to
the three-dimensional shock mode and the change of the
slope to the universal value. The results for a simple fcc
crystal are given for comparison [3]. The curve for the
amorphous solid coincides with the fcc curve.

a short interval of about up/c0 = 0.1 the behavior
changes strongly. Defect bands occur which perfect
crystalline domains. The bands grow with increasing
strength of the shock wave, and finally only a few
crystalline spots are left. Starting at up/c0 ≈ 0.5
the structure becomes destroyed completely by the
shock wave.

The quasicrystal stays intact up to a piston velo-
city of about up/c0 = 0.25. Only diffusion processes
occur in this regime. Between up/c0 = 0.25 and 0.55
defect bands are observed as can be seen in Fig. 2.
The clumps are the intersections of the defect bands
which run diagonally through the sample. At shock
waves stronger than up/c0 = 0.55 the quasicrystal
becomes amorphous.

The defect bands are different from ordinary sta-
cking faults which have a typical width of a mono-
layer. The width of the bands is up to 10 interato-
mic distances a and the separation of the order of
35 a. The spacing between the bands depends on
the cross section of the sample since the network of
defect bands is generated by the periodic boundary
conditions. In the case of small cross sections the
boundary conditions may even mimic an amorphous
state. Only for very large simulation cells [3] it was
possible up to now to distinguish different slipping
systems.

In the amorphous solid there is on distinction bet-
ween different regimes. No defect bands occur, and
the system behaves like a structureless fluid.
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Fig. 2. Pattern of defects in the quasicrystal at up/c0 =
0.45. The clumps are the intersections of the diagonal
defect bands indicated by the bars through the figure. A
picture of the crystal would look wuite similar.

5. Discussion

We have demonstrated that there is no deviation
from the universal Hugoniot law for shock front
velocities in a binary crystal alloy and in a two-
atomic quasicrystals in the case of strong steady
shock waves. In the case of weak shock waves, ho-
wever, we find that the slopes for the quasicrystal as
well as the crystal differ from the Hugoniot law. The
reason is the one-dimensional behavior of the system.
The difference between the slopes of the crystal and
the quasicrystal may be an effect of the aperiodicity.

In the quasicrystal we have found defect bands si-
milar to the shear bands observed in fcc crystals [3].
Up to now it has not been possible to characterize
them more precisely. It can even be speculated that
the structures are melted locally. The defect bands
could not be observed if the transverse dimension of
the samples was too small. It will be necessary to
carry out simulation with larger samples to reduce
the influence of periodic boundary conditions which
fold the defect bands back onto themselves.

We have tried to find a crystal and a quasicrystal
structure which are as close as possible. There are
still differences between the average binding energies
and the composition, however. Therefore we can
not rule out that some of the effects observed (for
example the different slopes in the Hugoniot plot)
are due to the structural differences.

The propagation direction of the shock waves was
the four-fold direction in the crystal, and the two-
fold direction in the quasicrystal which is normal to
the close-packed planes. It is planned to extend the
simulations to the other symmetry directions to find
out whether differences exist.

The crystal and the quasicrystal structure remain

fully intact in the weak shock wave regime, but here
the shock waves are not ”real” shock waves since they
do not cause plastic deformation. In the interme-
diate range we observe complicated defect structures.
In the strong shock wave regime both structures are
destroyed, in contrast to simple crystals. The reason
is that it is not possible in our model to exchange
A and B atoms at random without destabilizing the
structure. Therefore many defects which are per-
mitted in monatomic structures are fatal for binary
structures.
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